
Building An ASP.Net Core Application

ManufacturerManager is a basic .Net Core application used to keep track of manufacturers and

widgets that they produce.

This book will go through the process that I have used from start to finish, describing and explaining

the steps taken and the reasoning behind them. Please note that this is my personal approach based

on other applications on which I have worked. I do not plan to explain every action that is suggested:

this is simply my take on things.

There are one or two business rules that must be taken into consideration:

1) There cannot be two manufacturers with the same name.

2) There cannot be two widgets with the same name made by the same manufacturer.

3) A widget does not have to have a colour, but if pink is chosen as a colour a justification must be

made for this choice.

Microsoft Visual Studio 2019 Community Edition and Microsoft SQL Server Management Studio have

been used throughout. Both of these are free.

Suggested way of using this document and the downloaded solution

Some code will be given in this document but the vast majority of it will be in the

ManufacturerManagerCompleted solution that you downloaded along with this document. I suggest

creating the ManufacturerManager application in this document and copying code from the

completed application (or using Add | Existing Item... in VS) to this one where necessary.

Creating the database

Included with this download you will find a script to create the database that will be the basis of this

application. I have not used the 'Code First' approach as I prefer to create my database myself.

The table structure looks like this:

and here is a database diagram with all the foreign keys shown:

Creating the solution and the DataAccess project

In Visual Studio, select File | New | Project, choose 'Class Library (.NET Core):

and click 'Next'. Configure your new project as follows (choosing your own location, of course):

Make sure that you DO NOT select 'Place solution and project in the same directory'. Click 'Create'

and Visual Studio will create your solution and project for you. It will look like this:

We do not require 'Class1.cs' so delete this straight away.

Once you have done this, right click on the project and select 'Properties'. Change the Assembly

name and Default namespace by prepending 'ManufacturerManager.' (note the dot) to the existing

values:

The DataAccess project is going to contain all the classes relating to the tables in the database,

classes to hold business logic, classes to hold validation properties and classes to hold the

configuration information for the objects as well as our database context and an interface used to

ensure that validation information is added to objects where required (Manufacturer and Widget in

the case of this application).

Adding the classes

The next thing to do is add four folders to the DataAccess project: DbClasses, BusinessClasses,

ConfigurationClasses and ModelMetadataClesses. When you have done so your solution should look

like this:

DbClasses

Add new classes to DbClasses until you have one class for each of the database tables:

In order to keep this document to a reasonable(?) length I will not be showing the code for every

class: these are included in the ManufacturerManagerCompleted application.

We will, however, dissect one class to see what it contains. This is Manufacturer.cs:

First up we have the required 'using' statements. Then, inside the namespace declaration we have

our class proper. Note the annotation on the class declaration:

This tells the Entity Framework Core that this class models the Manufacturer table. Note also that

this class has been declared partial: this is to enable us to add business logic to another part of the

class and keep this class purely for modelling the database table.

The [Key] annotation likewise informs EF Core that ManufacturerId is the primary key column in this

table. The Created and LastUpdated columns are both of type DateTime2 and the appropriate

annotation tells EF Core that this is the case.

We have a public int StatusId property and a public ManufacturerStatus ManufacturerStatus

property to go with it. The ManufacturerStatus property will become a navigation property (on

which more later) and this is how the relationship between a manufacturer and its status is

modelled.

CreatedById and StaffMemberCreated and LastUpdatedById and StaffMemberUpdated work in the

same way.

The last thing to mention about this class is this:

A manufacturer has a one-to-many relationship with widget and this is represented by an

ICollection<Widget>. This will be modelled in the widget object by having a public int

ManufacturerId property and a public Manufacturer Manufacturer property. This works in the same

way as the StatusId and ManufacturerStatus properties described above.

BusinessClasses

Add a partial class in the business classes folder for each of the partial classes in the DbClasses

folder:

Some of these classes will contain business logic - and this is where some people with disagree with

my approach, but as I have said before it is just my approach! - and all of them will contain a

reference to the ModelMedataClass for this object. ModelMetadata will be explained shortly.

Again, in the sake of attempting a little brevity, I shall not give all the code here but it is included in

the ManufacturerManagerCompleted solution. We will take a look at the Manufacturer.cs partial

class. As we can see, it is a bit of a mess:

This is because of three things:

1) The NuGet package Microsoft.AspNetCore.Mvc.Core package is missing

2) It can't see the ManufacturerModelMetadata class (as it doesn't yet exist)

3) It can't see the IAuditableObject interface (this also doesn't yet exist)

To rectify the first issue we will simply get Visual Studio to install the required package for us: click

the 'Find and install latest version' menu item and Visual Studio will go and get it for you:

Before we go and create the ModelMetadataClass for this object we will quickly solve the other two

issues.

In the root of the DataAccess project create two classes: ManufacturerManagerContext and

IAuditableObject. We will add the contents of ManufacturerManagerContext later, but for now

make sure that the two classes are as follows.

IAuditableObject:

This simply enforces the presence of these properties in any class which implements this interface.

As you can see, these are audit properties - hence the name of the interface.

ManufacturerManagerContext:

In order to use DbContext we need to install the Microsoft.EntityFrameworkCore package from

NuGet.

Here is the code once the package has installed:

We will come back to this file shortly as it has a very big part to play in our application!

Let us return to the ManufacturerManager partial class in BusinessClasses. Here is the whole file

(any remaining issues with it will be addressed shortly):

First we have our using statements, then comes the namespace declaration followed by the

ModelMetadata annotation and the class declaration. Note that as well as implementing

IAuditableObject (which the interface that we just created) it implements IValidatableObject. This is

a built in interface which provides a way for an object to be validated and it enforces the presence of

the Validate method, which returns an IEnumerable<ValidationResult>.

Next we have a private readonly ManufacturerManagerContext, which is populated in the

constructor into which it is injected.

Let's dissect the Validate method.

Obviously we first need a list of ValidationResult or we will have nothing to hold any errors that we

find.

Next we declare a variable called duplicates and populate it with any manufacturers found in the

_manufacturers where the Name column (changed to lower case and with spaces removed) matches

the value in the Name property (similarly treated) of the manufacture that we are creating.

Of course, if this is an edit there will be a match in the database so we check to see if the value in

the ManufacturerId property is greater than zero. The logic is thus: if this is a create the

ManufacturerId will have been instantiated as zero when the new object was created. If this is an

edit the value will be greater than zero as we will be updating an existing manufacturer. If this turns

out to be an edit we then check to see if the ManufacturerIds are different: if they are we have an

error and are going to add a new ValidationResult to our list declared at the top of the method.

The first value we add is the error message that we wish to display, the second is a List<string>

containing the name(s) of the properties which have failed validation. Using nameof(Name) is the

same as using "Name", but avoids the hard coding. This error will be used to display the appropriate

warning in the page displayed to the user.

After all that we simply return our list: if it contains nothing no errors will be displayed as a result of

this method, but if it contains anything it means that the object is invalid.

That's it for the Manufacturer partial classes.

ModelMetadataClasses

In your ModelMetadataClasses folder add the classes shown in the image below (again, these are all

included in this download):

A word about ModelMetadataType. In earlier versions of EF it was simply called MetadataType, and

you can still reference

without an error being thrown. You just won't get any validation!

We will take a look at one or two aspects of the ManufacturerModelMetadata class first. Here are

the first few lines of code:

Note that this class can be made 'internal' in order to restrict access to it as far as possible.

The next few lines check the value in the Name property. The first makes sure that it is not longer

than 100 characters and displays an error message if it is. The second says that it is required and

adds a suitable error message if it is there is no value in the property.

This constructs the error message as follows: the {0} will be replaced with the name of the property

or if it has a [Display(Name = "Some Name")] annotation the Name value will be used. The {1} will

be replaced (in this case) with the maximum number of characters allowed in the property.

The other annotations of note are

Here we have validation for a dropdown list. Dropdown lists in this application always have a value

of (-1) for "Please select" so we use range validation to ensure that a value has been chosen. Here

we see the use of the Display property as we don't want to show an error message of "StatusId is

required" as this would mean little to a user.

For the sake of consistency there is a ModelMetadataClass for every object regardless of whether

validation is required.

ConfigurationClasses

Add a ConfigurationClass as shown to the ConfigurationClasses folder for every object:

These will all be in the ManufacturerManagerCompleted solution so we will just look at a couple of

the configuration classes, starting with ManufacturerConfiguration.

Our configuration classes all implement IEntityTypeConfiguration<TEntity> where in this case TEntity

is a Manufacturer.

The Configure method is required by the interface and receives an EntityTypeBuilder<TEntity>

where TEntity is also a Manufacturer.

From the first two lines of the code we can see that the Name property of the Manufacturer object

is not going to be Unicode.

Now we come to the more interesting part of the method where the navigation properties of the

object are configured.

The next few lines do the following: a Manufacturer will have many Widgets and a Widget will have

one Manufacturer, the Widget having a required foreign key of ManufacturerId.

Following this we see that a Manufacturer has one ManufacturerStatus which will have many

Manufacturers, that a Manufacturer has a required foreign key of StatusId and that when a

Manufacturer is deleted (which they won't be) we do not require any action. This is because even if

we were to delete a Manufacturer we wouldn't want to delete its ManufacturerStatus as it will be

required for other Manufacturers.

ManufacturerManagerContext

This is the class which ties it all together and makes it work. It contains a list of all the tables in the

database and calls the ConfigurationClasses to set up the relationships between the classes. Here is

the start of the class:

Here we have a public property called UserId (which we will see in use shortly) and the constructor

into which is injected a DbContextOptions<ManufacturerManagerContext>. We will configure this

injection shortly. All the constructor does here is to pass the options parameter to the base class,

which is of course DbContext.

Next we have our DbSets:

I like to group related areas of my code using the #region / #endregion directives. This allows the

areas of related code to be collapsed to make larger files more readable and reduce scrolling.

As we can see, there is a DbSet<object> for each of our tables in the database.

We now call the configuration classes that we created earlier using an override of OnModelCreating:

All of our navigation properties will now be set up.

Finally, there is an override of SaveChangesAsync() which is where our audit data is automatically

added to any object which implements IAuditableObject:

EF Core tracks every object that is retrieved from the context to see if any changes are made to them

(unless you tell it not to, which we shall be doing later).

First we populate a variable called changedEntities with the contents of the ChangeTracker.Entries

object.

Looking at each changedEntity in the IEnumerable changedEntities collection we inspect its state to

see if it is 'EntityState.Added' or 'EntityState.Modified'. If it is we then see whether it implements

IAuditableObject and, if it does, the appropriate audit data is added. This is where the UserId

property at the top of the class is used.

Finally, we call the SaveChangesAsync() method in the base class:

And that is it for now for our DataAccess project! When you have added all the classes from

ManufacturerManagerCompleted we are ready to continue.

Creating the FrontEnd Project

Now we are going to add the project which will contain all the UI and do the configuration required

when the application runs.

Right-click on the solution in Solution Explorer and select Add | New Project...

This time you should choose ASP.Net Core Web Application. Click 'Next and you will be asked to

Configure your new project. The Location should be <yourlocation>\ManufacturerManager and the

project should be named 'FrontEnd'.

When you have done the above click 'Create' and you will be presented with a further set of options:

Ensure that .Net Core, ASP.Net Core 3.1, and Web Application are selected. You can leave the

'Configure for HTTPS' checkbox checked.

Finally, click 'Create' and Visual Studio will create the project for you. You will see the following

screen, which you can close.

The new project has been set as the Startup project (which is why it is bold) and some default files

and folders have been added:

The first thing that we are going to do is add our connection string to appsettings.json. Open the file

and edit it thus:

In a moment we are going to add the Context to the dependency container, but there is another

step that I always take before that.

ConfigValues

I consider it to be bad news to have hard coded strings where there is the potential for more than

one use of that string, so I put all of the strings that might be used multiple times into one static

class and call them from my code.

Add a new folder called Config to the FrontEnd project and add a new class called ConfigValues

inside the new folder. Replace the code in the newly created class with the following:

We will add more to this class as we go along but this will do for now. Note that the string value

matches the name of the context referred to in appsettings.json.

Startup.cs

Back to setting up the application. In Startup.cs add the following inside the ConfigureServices

method:

This breaks the application for several reasons. The first is that AddDbContext is not recognised as

the FrontEnd project is missing the Microsoft.EntityFrameworkCore package. From the Tools Menu

select NuGet Package Manager | Manage NuGet Packages for Solution... and install the package.

Your code will now look like this:

The next problem is that project can't see the ManufacturerManagerContext, so right-click the

Dependencies node in Solution Explorer and add a reference to the DataAccess project to start to fix

this. Even with the reference the squiggly red line is still there so hover over it and take Visual

Studio's offer to add a using ManufacturerManager.DataAccess statement.

Still not there!

Now we can't find UseSqlServer... Oddly, Visual Studio does not offer any useful tips here. The

answer is to add the Microsoft.EntityFrameworkCore.SqlServer package using the NuGet Package

manager. You also need to add

at the top of the file. When you have done this your code should look like this:

Hover over the error and take Visual Studio's offer to add

to your page and finally all the errors go away!

https://www.nuget.org/packages/Microsoft.EntityFrameworkCore.SqlServer/

The default application

The application will now run but, as you can see from the above screenshot, it's not very interesting!

We need to make some changes to _Layout.cshtml and add some pages for managing

Manufacturers and Widgets.

_Layout.cshtml

For those coming from WebForms, as I did, this is the equivalent of the MasterPage. In ours, we will

make some changes to the title of the page and to the menu.

Change the title thus:

and change the Menu so that it looks like this:

This will break the application again as you will need

at the top of the file. That will fix the issue of not being able to find the Config class, but at the

moment there is no Pages class in the Config class.

Open Config.cs and add the following to it:

These are strings that may be reused, so it's easier if they are in Config.cs to get around the

possibility of typos.

Back in _Layout.cshtml, replace the footer as follows

and delete Privacy.cshtml as we shan't be using it.

Index.cshtml

Open the Index page and replace the code in it as follows:

Now we are ready to start adding pages which actually do something!

First of all we need to add some NuGet packages. Right-click on FrontEnd in the Solution Explorer

and click Manage NuGet Packages...

Add the relevant packages so that the list looks like this:

Using a custom PageModel

For reasons that will become clear later we will now add a custom PageModel to our application.

Create a folder called Classes under the root of FrontEnd and in your new folder add a class called

ManufacturerManagerPageModel.cs.

Delete the code in the file that you just created and add the following to it:

Note that this class extends the PageModel class in Microsoft.AspNetCore.Mvc.RazorPages. All that

it does is to provide a context to all the classes which inherit from this class - note how the context is

provided via Dependency Injection - and populate an UserId with an arbitrary value from 1 to 3

depending on the time of day. Of course in the real world this would populate UserId with the Id of

the logged in user of the application. This UserId is the one that will be used in the override of

SaveChangesAsync() to provide the audit data when a Manufacturer or Widget is created or

updated.

Creating the pages

As we will need to keep the pages for Manufacturers and Widgets separate we need to create a

couple of folders for them. Under the Pages folder in Solution Explorer create two new folders:

ManufacturerPages and WidgetPages. We cannot call them simply Manufacturer and Widget as

when we come to create the namespaces for these pages we will find that a namespace name

cannot contain the name of an object.

Your Pages folder should now look like this:

In order to learn the Microsoft way of doing things I usually use the scaffolder and then change the

pages to do what I want them to do. We will also make a couple of changes that I have seen

recommended in various Microsoft tutorials.

Manufacturers

Right click on the ManufacturerPages folder and select Add | New Scaffolded Item...

Choose Razor Pages using Entity Framework (CRUD) from the Add New Scaffolded Item menu:

and click Add.

Make the following selections

and click Add.

Visual Studio will now scaffold pages for you so that your ManufacturerPages folder looks like this:

We can delete Delete.cshtml as we will not be doing any deletes. Any deletions required will be

done by setting the Manufacturer's status to Inactive.

Index.cshtml

As we only want to display selected information about the Manufacturer on the Index page we can

remove all references to UserCreated and UserUpdated. We can also remove the Delete link as we

will not be making any hard deletions. Your page should now look like this:

Index.cshtml.cs

Open this file as we will need to make some changes to it.

Make sure that the namespace is correct:

If the namespace doesn't automatically appear as ManufacturerManager.FrontEnd go back to the

properties of the FrontEnd project and ensure that the Assembly name and Default namespace

values are still correct:

Change the class declaration to read

so that our class inherits from our ManufacturerManagerPageModel.

This will break our constructor and cause the context created in this class to hide the inherited

member in ManufacturerManagerPageModel, so we need to change the next few lines. Remove the

context entirely and change the constructor as shown in this illustration:

Now instead of populating a context in this page we are passing the injected context to the base

class. Removing the context and changing the constructor will be necessary in every page that is

scaffolded.

As we have removed all references to UserCreated and UserUpdated we do not need to get these

from the context when we populate the IList<Manufacturer> on which the UI depends. We will not

use them - and although they will not break the page if left it is bad practice and can cause

significant overheads when large amounts of data is present, thereby slowing the application down.

Remove this from OnGetAsync:

 The final version of your page should look like this:

Finally, return to the .cshtml file and make sure that the model referred to is now

Finally, it might be a nice touch to change the ViewData["Title"] property from "Index" to

"Manufacturers", but this is purely cosmetic!

Your application should now run and enable you to navigate to the Manufacturers page:

which is still not showing very much!

Let's refactor the Create page so that we can add a Manufacturer. Then we can make some

improvements to the Index page - including showing the number of Manufacturers found - even if it

is zero - so that the user knows that the application hasn't just failed in some way.

Creating a Manufacturer

Right now the Create page is no good to us:

We don't need the Created / CreatedBy / LastUpdated / LastUpdatedBy controls as these properties

are automatically added to the created object by the override of the SaveChangesAsync method in

the context.

The status dropdown list contains an Id: what we need to do is show

Manufacturer.ManufacturerStatus.Name instead.

Lastly, and it's not a showstopper, I hate it when the first control on the page is not automatically

given the focus, so we will now fix all of the above.

Create.cshtml.cs

Open this file and start making changes. Firstly, the namespace, context and constructor...

Next the OnGet method.

Not sure what has happened to the indentation when the scaffolder is creating ViewData items!

Anyway, we are going to remove all of these (we don't need CreatedById or LastUpdatedById

anyway) and replace ViewData["StatusId"] with a SelectList - giving us strong typing for this object.

We are also going to create a method to populate the SelectList that can be called from anywhere. If

we don't do this the dropdown list will not be populated if the Post method returns the page

following a validation error.

In addition to the above we will completely rewrite the OnPostAsync method to take account of this

warning:

Your OnGet method should end up like this (I have been through the page and grouped the code

into Regions):

The page should have the following properties

Your PopulateStatuses method should look like this

Using nameof(ManufacturerStatus.PropertyName) here is preferable to hard coding the property

name as should the property name change the code will break and the application will not build until

the nameof() values are corrected. In fact, if Visual Studio is used to rename all references to the

property the code in the PopulateStatuses() method should change too. Even better!

Finally in this class we come to OnPostAsync(). It now looks like this:

First we create a new instance of a Manufacturer, passing _context to the constructor to enable the

BusinessClass to perform its validation.

We then await TryUpdateModelAsync(), passing it the newManufacturer object,

nameof(Manufacturer) to tell the method what sort of object we are dealing with and the properties

that we want the method to try to bind from the values in the page. This essentially creates a

whitelist of properties and if there is an attempt at an overposting attack the additional values

added in the attack will simply be ignored.

TryUpdateModelAsync will also call any Validate method found - in our case the one in the

BusinessClass partial of Manufacturer.

Assuming that TryUpdateModelAsync is successful we add newManufacturer to the context, await

SaveChangesAsync and redirect to the Index page using our ManufacturerIndex const string in

ConfigValues.Pages.

If TryUpdateModelAsync fails, however, we repopulate the ManufacturerStatuses select list via a call

to PopulateStatuses and return the page.

Create.cshtml

Having removed all the Created / Updated markup we should also correct the namespace for the

model:

and adjust the markup for the Status dropdown list so that it uses the ManufacturerStatuses

SelectList and not the (now non-existent) ViewData.

Last but not least add the autofocus attribute as follows to ensure that the Name textbox is given

the focus when the page loads:

Run the application and navigate to the Create Manufacturer page. It should now look like this:

Which is much more what we wanted!

Click the Create button without adding a Name and the page is returned with an error message

constructed from our [Required] data annotation in the ManufacturerModelMetadata. Had we not

called PopulateStatuses prior to returning the page the Status dropdown list would be empty.

Add a valid Name and click Create. The application will save the new Manufacturer and return to the

Index page, this time displaying the new Manufacturer. There is one slight issue, however: we are

only seeing the StatusId of the Manufacturer.

Index.cshtml revisited

Not only are we seeing the StatusId but also we are not seeing how many items have been returned.

(Ok, most users can probably count at least as far as one, but it would still be a nice touch to display

a count).

Open Index.cshtml and change

to

This will show the text version of the status not just the Id.

One of my personal bugbears is when things are displayed incorrectly and ungrammatically. One

example of this is when displaying a count of something and the text shows as '1 records'. We are

going to add a piece of logic which determines whether to write 1 record or 2 records and inject that

helper into our PageModel.

Add a new folder under Classes and call it Helpers. In the Helpers folder add a new class and call it

ReplacementHelper.cs. This class will contain one method for now:

Now we need to add this to the Index.cshtml.cs class:

In the first line of the class add a ReplacementHelper and alter the constructor as shown here:

In Startup.cs add a new line to the ConfigureServices method just below the servcies.AddDbContext

code:

We have now configured the application to inject the ReplacementHelper where required.

In order to add a count at the on the page add the following code just below the paragraph

containing the 'Create New' link.

Run the application, add a Manufacturer and look at the Manufacturer index page again:

Note that we now have a count (with the correct text) and that the status name is displayed instead

of the id.

Success!

Now try creating another Manufacturer with the same name and see the Validate method on the

Manufacturer BusinessClasses partial class return an error message:

Details.cshtml

Unfortunately we have some work to do on this one.

Open the file and have a look at the issues.

The first is StatusId. We need to change the markup as follows:

becomes

and

becomes

FullName is a property in the BusinessClass partial class of the StaffMember object.

Make the same changes to the StaffMemberUpdated section.

Change

to this:

to use a strongly typed SelectList in the model rather than ViewData and change the @model

declaration as follows:

Details.cshtml.cs

The changes in the PageModel are also similar to changes we have made previously.

Ensure that the namespace is correct. Make the class inherit from ManufacturerPageModel. Remove

the private readonly ManufacturerContext and alter the constructor to pass the injected context to

the base class.

The two includes for StaffMemberCreated and StaffMemberUpdated are required this time as we

are displaying that information in the UI.

Run the application again and navigate to the Manufacturer Details page and you will see the correct

information displayed:

Edit.cshtml

As you will probably have guessed, this page is going to need some work as well. The changes here

will be similar to the Create page.

We need to change the @model declaration, remove all references to CreatedBy, CreatedById,

LastUpdated and LastUpdatedById and create a SelectList for the statuses

Your amended markup will look like this:

Edit.cshtml.cs

Again, change the namespace to

change the class declaration to make it inherit from ManufacturerManagerPageModel, remove the

private readonly ManufacturerManager and alter the constructor to pass the injected context to the

base class.

remove the [BindProperty] annotation from the Manufacturer object and create a SelectList for the

ManufacturerStatuses

remove the StaffMemberCreated and StaffMemberUpdated includes from the code which gets the

Manufacturer from the context

remove the code which creates ViewData containing SelectLists and replace it with a call to

PopulateStatuses();

Your OnGetAsync method will now look like this:

Last but not least we need to alter the code in the OnPostAsync method. Delete everything within

the method and replace it as follows:

After a check to ensure that the id passed in is not null we use FirstOrDefaultAsync() to attempt to

retrieve the relevant Manufacturer from the context. This has been changed from FindAsync() as

FindAsync() does not allow us to use Include().

After making sure that the Manufacturer is not null we call TryUpdateModelAsync() as usual. If that

succeeds we have a look at the StatusId of the Manufacturer: if it is Inactive we need to set the

StatusId of all the Widgets (if any, hence the Count) made by this Manufacturer to Inactive as well. It

is not logical to have active Widgets for an inactive Manufacturer.

If there are any Widgets we simply iterate through Manufacturer.Widget and set the StatusId of all

the Widgets to inactive.

If everything is successful having awaited SaveChangesAsync() we navigate to the Index page,

otherwise we repopulate the Status dropdown list and return to the Edit page, where any errors will

automatically displayed.

Widgets

Having looked in depth at the processes required to Create, Display and Update Manufacturers we

will look at the same processes for Widgets, albeit not in such depth as there are quite a few

similarities between the two. Where there is little or no explanation of a process you should refer to

the Manufacturer pages as they will contain the information required to carry out the necessary

actions. All of the code for the Widget section can of course be found in

ManafacturerManagerCompleted.

Scaffold the required pages in your WidgetPages folder (ensuring that you choose the

DataAccess.Widget as your model) and delete the Delete page.

Index.cshtml

Edit the namespace and the UI for the Widgets, leaving only Widget, Manufacturer and Status

displayed. Ensure that the ManufacturerName and StatusName are displayed, not ManufacturerId

and StatusId

Remove the Delete link.

Index.cshtml.cs

Edit that namespace, Change the PageModel to ManufacturerManagerPageModel, delete the

context and edit the constructor. Remove the includes for Colour, ColourJustification,

StaffMemberCreated and StaffMemberUpdated in the OnGetAsync method.

Create.cshtml

Open this file and correct the namespace in the @model directive. Remove all the UI referring to

Created, CreatedById, LastUpdated and LastUpdatedById.

Create.cshtml.cs

There are a lot of changes in this page. Let's work through them.

Correct the namespace, remove the ManufacturerManager context and change the constructor to

pass the injected context to the base class:

Next we will look at the OnGet method. This has changed quite a lot:

It used to contain the familiar ViewData items but these have been replaced with strongly typed

SelectLists (which we will see in a minute) and the code to populate them has been abstracted away

into discrete methods - of which there are several, so it is more efficient to create one method to

call each of them.

This is the method to populate the Colours SelectList:

It should look very familiar - but there are a couple of additions to what we have seen before here.

Firstly we simply get a list of Colours from the context and order them by name. You will need to add

in your using statements - or allow Visual Studio to do it. We then insert a new Colour at position

zero in the existing colours collection.

We have added a new class in ConfigValues: PleaseSelect:

This allows us to reuse the same values for every dropdown list which requires a Please select option

(which is all of them except Status). The justification for having this class is that it is very easy when

creating something to miss a dropdown list and leave its selection at the first item in the list. This can

lead to errors, so we add this option. If you examine the ModelMetadata class for the Widget object

you will see that each property that contains an ObjectId has a RangeValidator on it with a lower

bound of 1 - therefore the validation will fail if 'Please select' is still showing for a required property.

After we have added the 'Please select' option we populate the SelectList in the normal way.

All of the other methods to populate the SelectLists follow the same pattern - except

PopulateStatuses, which does not require a 'Please select' (it is assumed that most objects will be

created Active.

A quick look at the properties in our PageModel:

Nothing unexpected here.

Lastly we have our heavily modified OnPostAsync method:

First, if the ModelState is not valid we repopulate the dropdown lists and return the page. This will

now display the errors.

Then we create a new Widget, passing in the context to enable validation.

If no colour has been chosen for the Widget we must null the ColourId property as trying to put -1

into the database will break the referential integrity enforced by the foreign key between Widget

and Colour.

If you inspect the Widget BusinessClasses partial class you will see that as well as validation to

prevent a Manufacturer having two widgets with the same name there is some code to require a

justification for choosing the colour Pink for a Widget, as these do not sell as well as the rest.

If the chosen colour is NOT Pink it is not logical to have a justification therefore we explicitly null the

ColourJustificationId property to be on the safe side.

Then it is just a case of adding the new Widget to the context, awaiting SaveChangesAsync and

navigating to the Widget index page.

If something went wrong we simply repopulate the SelectLists and return the page to display the

errors.

That's about it for the Create page.

Create.cshtml

Return to this page and make the changes shown in this illustration:

This is to use the SelectLists that we created instead of ViewBag / ViewData values and to add

validation for Manufacturer and ColourJustification.

Details.cshtml and Details.cshtml.cs

The usual namespace, PageModel and constructor changes will be necessary. You will also need to

change the code so that it displays the Manufacturer's name, the Status name and the First and Last

names of the user who created this Widget and the user who last updated it. You might want to

change the order in which the information appears on the page. My preference is Name,

Manufacturer, Colour, Colour Justification, Status, Created information, Updated information. Your

choice. You may also wish to add some code to display Not applicable when no colour or colour

justification is required

Edit.cshtml

As usual, change the @model directive to use the correct path. Remove all references to Created,

CreatedById, LastUpdated and LastUpdatedById. Change "ViewBag.ManufacturerId" to

"@Model.Manufacturers" and make similar changes to the Colour, ColourJustification and Status

select controls.

Edit.cshtml.cs

Make the usual changes to the namespace and class declaration, remove the context and amend the

constructor in the usual way.

Ensure that your properties are as follows:

Now it is time to look at our OnGetAsync Task:

We don't need any includes with our Widget as all we will be dealing with are Ids not the whole

Navigation Properties.

Obviously if we don't find a Widget with this Id we just return NotFound().

If we reach the next line of code we clearly found a Widget with the Id passed to the Task.

As ColourId is not a required property of a Widget it is quite possible that this will be null. We cannot

bind null to the Please select option of a dropdown list so we explicitly set the ColourId of the

Widget to ConfigValues.PleaseSelect.Int (which is -1). We carry out the same action for

ColourJustificationId if that is null.

Rather than creating a set of ViewData objects for the various select lists we now call await

DoPopulationsAsync(), which populates the SelectLists in turn. Here is the code for

PopulateColoursAsync():

By convention in the application, the Create Pages would normally be the only pages to have a

Please select option in a dropdown list. The Edit pages do not normally have them - it would be

illogical to have Please select in the Manufacturers list, for example - but as Colour is optional it is

vital to have Please select in the list or editing a Widget would force it to have a colour. The same is

true for ColourJustification.

Our page is now ready to display a Widget for editing but not yet ready to save the changes.

Your OnPostAsync task should look like this:

Having performed the usual checks we get the Widget with the id passed into the method from the

context - again checking to see if we actually found one.

If the Widget is not null we call await TryUpdateModelAsync(), passing the usual parameters. If this

is successful we simple null the ColourId and ColourJustificationId properties of the Widget where

appropriate, await SaveChangesAsync() and redirect to the WidgetIndex page.

If anything went wrong we repopulate the SelectLists and return the page to display the error(s).

Conclusion

I think that that is about it for this document. I hope you have enjoyed building the application and

that it has been a successful exercise!

There are a couple of things that I should do differently if I were doing this over again from scratch:

one being that I should look for areas where more use could be made of async Tasks. Specifically, it

is possible to make PopulateStatuses in the Edit.cshtml.cs for Manufacturers run asynchronously,

but I'm sure that there are more areas where this could be done.

There are a couple of additions that could be made to the application, but I have deliberately left

these to be performed as exercises (and because I have already spent a week writing this document

and I want to get it on my website for people to use!).

1) Add code to the Widgets Index page to display the number of records found. Use the example in

the Manufacturers Index page for assistance if required.

2) Add a link on the Manufacturer Details page to the Widget index page, but apply filtering to the

list of Widgets returned so that only Widgets made by that Manufacturer are displayed.

3) Add a Details property to Widget, Manufacturer or both. Use the DbScript to add a Details column

to the appropriate table(s), add the necessary property to the object(s), add the necessary validation

in the ModelMetadata class, add Configuration if required (hint - probably not going to be Unicode),

and add the necessary UI and code to the Create, Details and Edit pages

I hope that this has been helpful!

Copyright Julian Aburrow

April 2020

jaburrow@btinternet.com

jaburrow.co.uk

